Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Gland Surg ; 10(8): 2477-2489, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1372185

ABSTRACT

BACKGROUND: In recently years, breast endoscopic reconstruction surgery is becoming increasingly popular. And we have explored a series of endoscopic breast reconstruction procedures and applied it to our day surgery under the epidemic control of the novel coronavirus. METHODS: The present study was a retrospective analysis. Patients who underwent unilateral breast endoscopic reconstruction surgery in the West China Hospital from April 2017 to February 2021 were included in the study. Patients were divided into the following three groups: ward exploration period (WEP), ward maturation period (WMP), and day surgery period (DSP), respectively. We compared the results of postoperative complications, hospitalization costs, operation time, and BREAST-Q (a patient-reported outcome instrument measuring health-related quality-of-life and patient satisfaction in breast surgery) scale scores among the three groups of patients. RESULTS: A total of 66 patients were included (WEP n=30, WMP n=14, DSP n=22). Four people refused to complete the BREAST-Q scale, and five patients missed complication record sheets. Patients in the DSP and WMP groups had slightly higher postoperative satisfaction with their breasts than WEP, but there was no statistically significant difference (3 months postoperatively: WEP vs. WMP =0.515, WEP vs. DSP =0.418, WMP vs. DSP =0.982). On the postoperative BREAST-Q scale scores of psychosocial, sexual life and chest well-being, patients with DSP scored slightly higher than those with WEP versus WMP, but there was no statistically significant difference. The incidence of postoperative complications was generally higher in the WEP group than in the WMP and DSP groups, but there was no statistically significant incidence of either major or minor complications (P=1.000). With the use of prostheses and mesh, patients in the DSP group had lower hospitalization costs than other two groups. In terms of operative time, patients in the WMP and DSP groups had shorter operative times compared with the WEP group, and the results were statistically significant (WEP vs. WMP =0.000, WEP vs. DSP =0.000, WMP vs. DSP =0.243). CONCLUSIONS: We believe that performing our newly developed endoscopic breast reconstructive surgery at a day surgery center is safe and reliable.

2.
Echocardiography ; 38(8): 1272-1281, 2021 08.
Article in English | MEDLINE | ID: covidwho-1286670

ABSTRACT

BACKGROUND: Whether the combination of ventricular strain with high-sensitivity troponin I (hs-TNI) has an incremental prognostic value in coronavirus disease 2019 (COVID-19) patients has not been evaluated. The study aimed to evaluate the prognostic value of biventricular longitudinal strain and its combination with hs-TNI in COVID-19 patients. METHODS: A total of 160 COVID-19 patients who underwent both echocardiography and hs-TNI testing were enrolled in our study. COVID-19 patients were divided into two groups (critical and non-critical) according to severity-of-illness. The clinical characteristics, cardiac structure and function were compared between the two groups. The prognostic value of biventricular longitudinal strain and its combination with hs-TNI were evaluated by logistic regression analyses and receiver operating characteristic curves. Left ventricular longitudinal strain (LV LS) and right ventricular free wall longitudinal strain (RVFWLS) were determined by 2D speckle-tracking echocardiography. RESULTS: The LV LS and RVFWLS both were significantly lower in critical patients than non-critical patients (LV LS: -16.6±2.4 vs -17.9±3.0, P = .003; RVFWLS :-18.8±3.6 vs -23.9±4.4, P<.001). During a median follow-up of 60 days, 23 (14.4%) patients died. The multivariant analysis revealed that LV LS and RVFWLS [Odd ratio (95% confidence interval): 1.533 (1.131-2.079), P = .006; 1.267 (1.036-1.551), P = .021, respectively] were the independent predictors of higher mortality. Further, receiver-operating characteristic analysis revealed that the accuracy for predicting death was greater for the combination of hs-TNI levels with LV LS than separate LV LS (AUC: .91 vs .77, P = .001), and the combination of hs-TNI levels with RVFWLS than RVFWLS alone (AUC: .89 vs .83, P = .041). CONCLUSIONS: Our study highlights that the combination of ventricular longitudinal strain with hs-TNI can provide higher accuracy for predicting mortality in COVID-19 patients, which may enhance risk stratification in COVID-19 patients.


Subject(s)
COVID-19 , Troponin I , Echocardiography , Humans , Prognosis , SARS-CoV-2
3.
Front Cardiovasc Med ; 8: 645587, 2021.
Article in English | MEDLINE | ID: covidwho-1268240

ABSTRACT

Background: Increasing evidence points to cardiac injury (CI) as a common coronavirus disease 2019 (COVID-19) related complication. The characteristics of early CI (occurred within 72 h of admission) and late CI (occurred after 72 h of admission) and its association with mortality in COVID-19 patients is unknown. Methods: This retrospective study analyzed patients confirmed with COVID-19 in Union Hospital (Wuhan, China) from Jan 29th to Mar 15th, 2020. Clinical outcomes (discharge, or death) were monitored to April 15, 2020, the latest date of follow-up. Demographic, clinical, laboratory, as well as treatment and prognosis were collected and analyzed in patients with early, late CI and without CI. Results: A total of 196 COVID-19 patients were included for analysis. The median age was 65 years [interquartile range (IQR) 56-73 years], and 112 (57.1%) were male. Of the 196 COVID-19 patients, 49 (25.0%) patients had early and 20 (10.2%) patients had late CI, 56.6% developed Acute-Respiratory-Distress-Syndrome (ARDS) and 43 (21.9%) patients died. Patients with any CI were more likely to have developed ARDS (87.0 vs. 40.2%) and had a higher in-hospital mortality than those without (52.2 vs. 5.5%, P < 0.001). Among CI subtypes, a significantly higher risk of in-hospital death was found in patients with early CI with recurrence [19/49 patients, adjusted odds ratio (OR) = 7.184, 95% CI 1.472-35.071] and patients with late CI (adjusted OR = 5.019, 95% CI 1.125-22.388) compared to patients with early CI but no recurrence. Conclusions: CI can occur early on or late after, the initial 72 h of admission and is associated with ARDS and an increased risk of in-hospital mortality. Both late CI and recurrent CI after the initial episode were associated with worse outcomes than patients with early CI alone. This study highlights the importance of early examination and periodical monitoring of cardiac biomarkers, especially for patients with early CI or at risk of clinical deterioration.

4.
Front Cardiovasc Med ; 8: 633539, 2021.
Article in English | MEDLINE | ID: covidwho-1266656

ABSTRACT

Background: Lung injury is a common condition among hospitalized patients with coronavirus disease 2019 (COVID-19). However, whether lung ultrasound (LUS) score predicts all-cause mortality in patients with COVID-19 is unknown. The aim of the present study was to explore the predictive value of lung ultrasound score for mortality in patients with COVID-19. Methods: Patients with COVID-19 who underwent lung ultrasound were prospectively enrolled from three hospitals in Wuhan, China between February 2020 and March 2020. Demographic, clinical, and laboratory data were collected from digital patient records. Lung ultrasound scores were analyzed offline by two observers. Primary outcome was in-hospital mortality. Results: Of the 402 patients, 318 (79.1%) had abnormal lung ultrasound. Compared with survivors (n = 360), non-survivors (n = 42) presented with more B2 lines, pleural line abnormalities, pulmonary consolidation, and pleural effusion (all p < 0.05). Moreover, non-survivors had higher global and anterolateral lung ultrasound score than survivors. In the receiver operating characteristic analysis, areas under the curve were 0.936 and 0.913 for global and anterolateral lung ultrasound score, respectively. A cutoff value of 15 for global lung ultrasound score had a sensitivity of 92.9% and specificity of 85.3%, and 9 for anterolateral score had a sensitivity of 88.1% and specificity of 83.3% for prediction of death. Kaplan-Meier analysis showed that both global and anterolateral scores were strong predictors of death (both p < 0.001). Multivariate Cox regression analysis showed that global lung ultrasound score was an independent predictor (hazard ratio, 1.08; 95% confidence interval, 1.01-1.16; p = 0.03) of death together with age, male sex, C-reactive protein, and creatine kinase-myocardial band. Conclusion: Lung ultrasound score as a semiquantitative tool can be easily measured by bedside lung ultrasound. It is a powerful predictor of in-hospital mortality and may play a crucial role in risk stratification of patients with COVID-19.

5.
J Virol Methods ; 289: 114038, 2021 03.
Article in English | MEDLINE | ID: covidwho-958903

ABSTRACT

Cell-based vaccine manufacturing is a flexible and cost-effective approach for vaccine production which, however, requires cell adaptation to new vaccine strains. Generating one omnipotent or semi-omnipotent cell line feasible for the production of multiple viruses could help resolve this problem. We previously proposed virus Baltimore subtyping-based choice of receptors and a panel of minimally preferred receptors for the establishment of cells with a broad virus susceptibility spectrum. With the aim of establishing cells sensitive to viruses of livestocks including bovine, ovine and canine, we selected TfR and Nectin 4 from the minimally preferred receptor panel, and successfully sensitized the starting cell line MDBK to CPV and CDV infection. Our study is a preliminary validation of our previously identified associations between host receptor usage and virus Baltimore subtyping. Evidence from more viruses of the same Baltimore subtyping and more starting cell lines need to be used to consolidate our results.


Subject(s)
Receptors, Virus , Viruses , Animals , Cattle , Cell Adhesion Molecules/genetics , Cell Line , Dogs , Nectins , Sheep
6.
Front Cardiovasc Med ; 8: 642973, 2021.
Article in English | MEDLINE | ID: covidwho-1167307

ABSTRACT

Background: The cardiac manifestations of coronavirus disease 2019 (COVID-19) patients with cardiovascular disease (CVD) remain unclear. We aimed to investigate the prognostic value of echocardiographic parameters in patients with COVID-19 infection and underlying CVD. Methods: One hundred fifty-seven consecutive hospitalized COVID-19 patients were enrolled. The left ventricular (LV) and right ventricular (RV) structure and function were assessed using bedside echocardiography. Results: Eighty-nine of the 157 patients (56.7%) had underlying CVD. Compared with patients without CVD, those with CVD had a higher mortality (22.5 vs. 4.4%, p = 0.002) and experienced more clinical events including acute respiratory distress syndrome, acute heart injury, or deep vein thrombosis. CVD patients presented with poorer LV diastolic and RV systolic function compared to those without CVD. RV dysfunction (30.3%) was the most frequent, followed by LV diastolic dysfunction (9.0%) and LV systolic dysfunction (5.6%) in CVD patients. CVD patients with high-sensitivity troponin I (hs-TNI) elevation or requiring mechanical ventilation therapy demonstrated worsening RV function compared with those with normal hs-TNI or non-intubated patients, whereas LV systolic or diastolic function was similar. Impaired RV function was associated with elevated hs-TNI level. RV function and elevated hs-TNI level were independent predictors of higher mortality in COVID-19 patients with CVD. Conclusions: Patients with COVID-19 infection and underlying CVD displayed impaired LV diastolic and RV function, whereas LV systolic function was normal in most patients. Importantly, RV function parameters are predictive of higher mortality.

7.
Ann Transl Med ; 9(3): 213, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1110876

ABSTRACT

BACKGROUND: The prognostic role of the interval between disease onset and hospital admission (O-A interval) was undetermined in patients with the coronavirus disease 2019 (COVID-19). METHODS: A total of 205 laboratory-confirmed inpatients admitted to Hankou hospital of Wuhan from January 11 to March 8, 2020 were consecutively included in this retrospective observational study. Demographic data, medical history, laboratory testing results were collected from medical records. Univariate and multivariate logistic regression models were used to evaluate the prognostic effect of the O-A interval (≤7 versus >7 days) on disease progression in mild-to-moderate patients. For severe-to-critical patients, the in-hospital mortality and the length of hospital stay were compared between the O-A interval subgroups using log-rank test and Mann-Whitney U test, respectively. RESULTS: Mild-to-moderate patients with a short O-A interval (≤7 days) are more likely to deteriorate to severe-to-critical stage compared to those with a long O-A interval (>7 days) [unadjusted odds ratio =2.93, 95% confidence interval (CI), 1.32-6.55; adjusted odds ratio =3.44, 95% CI, 1.20-9.83]. No association was identified between the O-A interval and the mortality or the length of hospital stay of severe-to-critical patients. CONCLUSIONS: The O-A interval has predictive values for the disease progression in mild-to-moderate COVID-19 patients. Under circumstances of the specific health system in Wuhan, China, the spontaneous healthcare-seeking behavior is usually determined by patients' own heath conditions. Hence, the O-A interval can be reflective of the natural course of COVID-19 to some extent. However, our findings should be validated further in other cohorts and in other health systems.

8.
Front Cardiovasc Med ; 8: 641088, 2021.
Article in English | MEDLINE | ID: covidwho-1106021

ABSTRACT

Background: RVEF (right ventricular ejection fraction) measured by three-dimensional echocardiography (3DE) has been used in evaluating right ventricular (RV) function and can provide useful prognostic information in other various cardiovascular diseases. However, the prognostic value of 3D-RVEF in coronavirus disease 2019 (COVID-19) remains unknown. We aimed to investigate whether 3D-RVEF can predict the mortality of COVID-19 patients. Methods: A cohort of 128 COVID-19-confirmed patients who had undergone echocardiography were studied. Thirty-one healthy volunteers were also enrolled as controls. COVID-19 patients were divided into three subgroups (general, severe, and critical) according to COVID-19 severity-of-illness. Conventional RV structure and function parameters, RV free wall longitudinal strain (FWLS) and 3D-RVEF were acquired. RVFWLS was measured by two-dimensional speckle tracking echocardiography. RVEF was acquired by 3DE. Results: Compared with controls, 2D-RVFWLS and 3D-RVEF were both significantly decreased in COVID-19 patients (-27.2 ± 4.4% vs. -22.9 ± 4.8%, P < 0.001; 53.7 ± 4.5% vs. 48.5 ± 5.8%, P < 0.001). Critical patients were more likely to have a higher incidence of acute cardiac injury and acute respiratory distress syndrome (ARDS), and worse prognosis than general and severe patients. The critical patients exhibited larger right-heart chambers, worse RV fractional area change (RVFAC), 2D-RVFWLS, and 3D-RVEF and higher proportion of pulmonary hypertension than general and severe patients. Eighteen patients died during a median follow-up of 91 days. The multivariate Cox regression analysis revealed the acute cardiac injury, ARDS, RVFAC, RVFWLS, and 3D-RVEF were independent predictors of death. 3D-RVEF (chi-square to improve 18.3; P < 0.001), RVFAC (chi-square to improve 4.5; P = 0.034) and 2D-RVFWLS (chi-square to improve 5.1; P = 0.024) all provided additional prognostic value of higher mortality over clinical risk factors. Moreover, the incremental predictive value of 3D-RVEF was significantly (P < 0.05) higher than RVFAC and RVFWLS. Conclusion: 3D-RVEF was the most robust independent predictor of mortality in COVID-19 patients and provided a higher predictive value over conventional RV function parameters and RVFWLS, which may be helpful to identify COVID-19 patients at a higher risk of death.

9.
Front Cardiovasc Med ; 7: 632434, 2020.
Article in English | MEDLINE | ID: covidwho-1063323

ABSTRACT

Background: Biventricular longitudinal strain has been recently demonstrated to be predictive of poor outcomes in various cardiovascular settings. Therefore, this study sought to investigate the prognostic implications of biventricular longitudinal strain in patients with coronavirus disease 2019 (COVID-19). Methods: We enrolled 132 consecutive patients with COVID-19. Left ventricular global longitudinal strain from the apical four-chamber views (LV GLS4CH) and right ventricular free wall longitudinal strain (RV FWLS) were obtained using two-dimensional speckle-tracking echocardiography. Results: Compared with patients without cardiac injury, those with cardiac injury had higher levels of coagulopathy and inflammatory biomarkers, higher incidence of complications, more mechanical ventilation therapy, and higher mortality. Patients with cardiac injury displayed decreased LV GLS4CH and RV FWLS, elevated pulmonary artery systolic pressure, and higher proportion of pericardial effusion. Higher biomarkers levels of inflammation and cardiac injury, and the presence of pericardial effusion were correlated with decreases in LV GLS4CH and RV FWLS. During hospitalization, 19 patients died. Compared with survivors, LV GLS4CH and RV FWLS were impaired in non-survivors. At a 3-month follow-up after discharge, significant improvements were observed in LV GLS4CH and RV FWLS. Multivariate Cox analysis revealed that LV GLS4CH [hazard ratio: 1.41; 95% confidence interval [CI]: 1.08 to 1.84; P = 0.011] and RV FWLS (HR: 1.29; 95% CI: 1.09-1.52; P = 0.003) were independent predictors of higher mortality in patients with COVID-19. Conclusions: LV GLS4CH and RV FWLS are independent and strong predictors of higher mortality in COVID-19 patients and can track improvement during the convalescent phase of their illness. Therefore, biventricular longitudinal strain may be crucial for risk stratification and serial follow-up in patients with COVID-19.

10.
Water Res ; 193: 116873, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1046109

ABSTRACT

In 2020, a sudden COVID-19 pandemic unprecedentedly weakened anthropogenic activities and as results minified the pollution discharge to aquatic environment. In this study, the impacts of the COVID-19 pandemic on aquatic environment of the southern Jiangsu (SJ) segment of Beijing-Hangzhou Grand Canal (SJ-BHGC) were explored. Fluorescent component similarity and high-performance size exclusion chromatography analyses indicated that the textile printing and dyeing wastewater might be one of the main pollution sources in SJ-BHGC. The water quality parameters and intensities of fluorescent components (WT-C1(20) and WT-C2(20)) decreased to low level due to the collective shutdown of all industries in SJ region during the Spring Festival holiday and the outbreak of the domestic COVID-19 pandemic in China (January 24th to late February, 2020). Then, they presented a gradual upward trend after the domestic epidemic was under control. In mid-March, the outbreak of the international COVID-19 pandemic hit the garment export trade of China and consequently inhibited the production activities of textile printing and dyeing industry (TPDI) in SJ region. After peaking on March 26th, the intensities of WT-C1(20) and WT-C2(20) decreased again with changed intensity ratio until April 12th. During the study period (135 days), correlation analysis revealed that WT-C1 and WT-C2 possessed homology and their fluorescence intensities were highly positively correlated with conductivity and CODMn. With fluorescence fingerprint (FF) technique, this study not only excavated the characteristics and pollution causes of water body in SJ-BHGC, but also provided novel insights into impacts of the COVID-19 pandemic on production activities of TPDI and aquatic environment of SJ-BHGC. The results of this study indicated that FF technique was an effective tool for precise supervision of water environment.


Subject(s)
COVID-19 , Pandemics , Beijing/epidemiology , China/epidemiology , Humans , SARS-CoV-2
11.
Crit Care ; 24(1): 700, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-992530

ABSTRACT

BACKGROUND: Bedside lung ultrasound (LUS) has emerged as a useful and non-invasive tool to detect lung involvement and monitor changes in patients with coronavirus disease 2019 (COVID-19). However, the clinical significance of the LUS score in patients with COVID-19 remains unknown. We aimed to investigate the prognostic value of the LUS score in patients with COVID-19. METHOD: The LUS protocol consisted of 12 scanning zones and was performed in 280 consecutive patients with COVID-19. The LUS score based on B-lines, lung consolidation and pleural line abnormalities was evaluated. RESULTS: The median time from admission to LUS examinations was 7 days (interquartile range [IQR] 3-10). Patients in the highest LUS score group were more likely to have a lower lymphocyte percentage (LYM%); higher levels of D-dimer, C-reactive protein, hypersensitive troponin I and creatine kinase muscle-brain; more invasive mechanical ventilation therapy; higher incidence of ARDS; and higher mortality than patients in the lowest LUS score group. After a median follow-up of 14 days [IQR, 10-20 days], 37 patients developed ARDS, and 13 died. Patients with adverse outcomes presented a higher rate of bilateral involvement; more involved zones and B-lines, pleural line abnormalities and consolidation; and a higher LUS score than event-free survivors. The Cox models adding the LUS score as a continuous variable (hazard ratio [HR]: 1.05, 95% confidence intervals [CI] 1.02 ~ 1.08; P < 0.001; Akaike information criterion [AIC] = 272; C-index = 0.903) or as a categorical variable (HR 10.76, 95% CI 2.75 ~ 42.05; P = 0.001; AIC = 272; C-index = 0.902) were found to predict poor outcomes more accurately than the basic model (AIC = 286; C-index = 0.866). An LUS score cut-off > 12 predicted adverse outcomes with a specificity and sensitivity of 90.5% and 91.9%, respectively. CONCLUSIONS: The LUS score devised by our group performs well at predicting adverse outcomes in patients with COVID-19 and is important for risk stratification in COVID-19 patients.


Subject(s)
COVID-19/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Point-of-Care Systems , Respiratory Distress Syndrome/diagnostic imaging , Ultrasonography/methods , Adult , Aged , COVID-19/mortality , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Prognosis , Prospective Studies , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Time-to-Treatment , Tomography, X-Ray Computed
12.
JACC Cardiovasc Imaging ; 13(11): 2287-2299, 2020 11.
Article in English | MEDLINE | ID: covidwho-133405

ABSTRACT

Objectives: The aim of this study was to investigate whether right ventricular longitudinal strain (RVLS) was independently predictive of higher mortality in patients with coronavirus disease-2019 (COVID-19). Background: RVLS obtained from 2-dimensional speckle-tracking echocardiography has been recently demonstrated to be a more accurate and sensitive tool to estimate right ventricular (RV) function. The prognostic value of RVLS in patients with COVID-19 remains unknown. Methods: One hundred twenty consecutive patients with COVID-19 who underwent echocardiographic examinations were enrolled in our study. Conventional RV functional parameters, including RV fractional area change, tricuspid annular plane systolic excursion, and tricuspid tissue Doppler annular velocity, were obtained. RVLS was determined using 2-dimensional speckle-tracking echocardiography. RV function was categorized in tertiles of RVLS. Results: Compared with patients in the highest RVLS tertile, those in the lowest tertile were more likely to have higher heart rate; elevated levels of D-dimer and C-reactive protein; more high-flow oxygen and invasive mechanical ventilation therapy; higher incidence of acute heart injury, acute respiratory distress syndrome, and deep vein thrombosis; and higher mortality. After a median follow-up period of 51 days, 18 patients died. Compared with survivors, nonsurvivors displayed enlarged right heart chambers, diminished RV function, and elevated pulmonary artery systolic pressure. Male sex, acute respiratory distress syndrome, RVLS, RV fractional area change, and tricuspid annular plane systolic excursion were significant univariate predictors of higher risk for mortality (p < 0.05 for all). A Cox model using RVLS (hazard ratio: 1.33; 95% confidence interval [CI]: 1.15 to 1.53; p < 0.001; Akaike information criterion = 129; C-index = 0.89) was found to predict higher mortality more accurately than a model with RV fractional area change (Akaike information criterion = 142, C-index = 0.84) and tricuspid annular plane systolic excursion (Akaike information criterion = 144, C-index = 0.83). The best cutoff value of RVLS for prediction of outcome was -23% (AUC: 0.87; p < 0.001; sensitivity, 94.4%; specificity, 64.7%). Conclusions: RVLS is a powerful predictor of higher mortality in patients with COVID-19. These results support the application of RVLS to identify higher risk patients with COVID-19.


Subject(s)
Coronavirus Infections/complications , Echocardiography, Doppler , Pneumonia, Viral/complications , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right , Adult , Aged , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/mortality , Ventricular Dysfunction, Right/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL